Hydrogen is the most environmentally friendly fuel that can be efficiently used for power generation. When oxidized in a fuel cell, it produces steam as the only emission. At present, however, hydrogen is produced almost entirely from fossil fuels such as natural gas, naphtha, and inexpensive coal. In such processes, the same amount of CO2 as that formed from combustion of those fuels is released during the hydrogen production stage.
Renewable biomass is an attractive alternative to fossil feedstocks because of the potential for essentially zero net CO2 impact. Unfortunately, hydrogen content in biomass is only 6-6.5% compared to almost 25% in natural gas. For this reason, on a cost basis, producing hydrogen by the biomass gasification/water-gas shift process cannot compete with the well-developed technology for steam reforming of natural gas. However, an integrated process, in which part of the biomass is used to produce more valuable materials or chemicals and only residual fractions are used to generate hydrogen, can be an economically viable option.
Biomass-based processes for the production of hydrogen can be either thermochemical or biological and can produce this clean carrier directly or through an intermediate, storable product. Also, the use of coproducts has to be addressed to improve the process economics and in view of the sustainability of using this natural resource.
Thermochemical biomass processing has two attractive features: (1) it is omnivoric, that is, a very broad range of biomass feedstock can be completely converted and (2) it can be integrated with fossil-based infrastructure for large-scale production of synthesis gas that is existing and foreseen to be biobased in the medium- to long-term future.
No comments:
Post a Comment